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Abstract
The second-order phase transition of 4He from a normal fluid to a superfluid
is ideally suited for studies of critical behaviour. In particular, effects of
confinement have been studied recently to verify theoretical predictions of
correlation-length scaling and calculations of specific scaling functions. These
predictions are summarized for the specific heat and the superfluid density.
The method of achieving confinement is discussed, as well as the measuring
technique. The specific heat and the superfluid density in planar confinement
are examined. It is found that the specific heat scales well on the normal side,
and just as well on the superfluid side until the region of the specific heat
maximum is reached. Here deviations from scaling are seen. It is possible that
this behaviour is associated with the specific crossover in two dimensions. The
superfluid fraction, which has been measured for the same type of confinement
in two different ways, does not scale. Results of a calculation for the superfluid
density to assess the role of the inhomogeneity induced by the van der Waals
attraction at the confining walls are presented.

(Some figures in this article are in colour only in the electronic version; see www.iop.org)

1. Introduction

The behaviour of a system near a second-order phase transition has been the subject of interest
for a long time. One knows that the thermodynamic response is characterized by power
laws. Thus, there are characteristic exponents which govern the singular behaviour as the
transition is approached. One also knows that there are relationships among these exponents
known as scaling laws. These limit the number of necessary exponents and amplitudes needed
to describe a multitude of thermodynamic quantities. Further still, the behaviour of rather
disparate physical systems, such as magnets and fluids, can be brought under the same umbrella
via the concept of universality. This limits the number of classes one needs to consider to those
which differ in spatial dimension, and in the vector character of the order parameter. This is
a quantity such as the magnetization for a ferromagnet, or the difference between the liquid
and gas density at the liquid–gas critical point, which vanish as one approaches the critical
temperature Tc from below. Universality is also a concept which can be applied to the same
physical system if there is a locus of second-order transitions along a line or a surface in
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thermodynamic space. Near Tc, fluctuations are manifest up to a length ξ , the correlation
length, which diverges as Tc is approached from either side.

Liquid 4He at saturated vapour pressure has a transition near Tλ
∼= 2.2 K at which point

the liquid goes from a normal state into a superfluid state. This transition is second order, and
is marked by a near-divergence of the specific heat CP , a vanishing of the superfluid density as
Tλ is approached from below, and a divergent thermal conductivity as Tλ is approached from
above [1]. The transition also extends over a range of pressures up to the freezing point near
30 bar, and over a range of 3He–4He concentrations. Thus, the locus of second-order transitions
is a surface in the pressure–temperature–concentration space. This gives one a wide range of
variables over which critical behaviour can be studied. One drawback in the case of helium
is the fact that the order parameter is a wavefunction; thus there is no laboratory ordering
field which one can manipulate. Hence, the susceptibility is not an accessible thermodynamic
function. Within these limitations, the critical behaviour in helium is extremely well known
and has yielded stringent checks of scaling and universality.

For the critical behaviour to be described by power laws as discussed above, it is required
that the system be in the thermodynamic, or bulk limit. Even with the correlation length ξ

diverging at the transition, this limit is not difficult to realize with typical laboratory samples.
However, this is not always so. Even a large system might consist of small domains which
can be comparable to ξ . Or by design, one might want to explore situations where a system is
made finite deliberately to see how criticality is affected. This was first considered some time
ago [2]. It was suggested that under appropriate conditions a finite system should be described
by functions which can be calculated from the properties of the bulk system. No new critical
exponents should emerge, but a scaling should be achieved with the variable ξ/L, whereL is the
smallest confining dimension [3]. This is not an easy prediction to verify experimentally, since
it involves the realization of small samples with surfaces which are ‘benign’ to the ordering
system. It also requires uniformity in the geometry of confinement, a point which is irrelevant
in the thermodynamic limit. Finite systems are perforce geometry dependent. Thus, to study
finite-size effects one must realize a series of confinements which are the same in all respects
except in the small dimension L. The simplest examples of this are films with dimensions
L × ∞ × ∞, channels of L × L × ∞, and boxes, L × L × L. More complicated sample
geometries in which a distribution of Ls is present are not suitable for studying correlation-
length scaling. Also accompanying these simple geometries is the concept of dimensionality
crossover to 2D, 1D, or 0D respectively depending on how many spatial directions are made
small. This crossover might be particularly important in the case where in the lower dimension
the system still exhibits its own criticality. In this case, the confined system will evolve in a
continuous manner from bulk-like, to finite-size, and eventually cross over to a lower dimension
as ξ grows with the approach to Tc. One should note that while ξ itself is renormalized by the
confinement (it no longer diverges at Tc), the scaling of the thermodynamics is still done with
the bulk ξ .

The superfluid transition of 4He is well suited for studying finite-size effects. First and
foremost a confining solid boundary terminates the order parameter without imposing an
ordering field, or a field which constrains the system along a thermodynamic path where its
response is not critical. Examples of this latter would be a fluid near the liquid–gas critical
point in which density would be affected directly by the local pressure due to attraction of
the walls. Another more subtle example might be a solid film formed on a substrate which
constrains the film along a path in which the volume does not follow a path of constant pressure
[4]. Another more obvious example is a magnetic boundary confining a magnetic film. With
helium, confining walls do provide a local pressure gradient, and hence an inhomogeneity
which breaks the expected ξ/L scaling. However, this effect is second order. Further, the
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effect is highly local and can be estimated in a reasonable way in certain cases. Helium
provides other advantages as well. Its critical behaviour in the bulk limit is very well known.
In the case of the heat capacity for instance, measurements have been extended to a space
environment where the effect of gravity is minimum and measurements have been made to
within t = |T/Tλ − 1| = 10−9 of the transition [5]. The superfluid properties offer some
advantages in achieving confinement and controlling the measurements. Thermometry near
2 K can be done with high resolution and very stable platforms. In addition, there are theoretical
calculations of specific scaling functions (beyond the ξ/L scaling ansatz) which are now
available and apply to 4He. More specifically they apply to XY systems, systems with two
degrees of freedom in the order parameter.

There are at present no measurements of other systems near a second-order transition
which have yielded results where overall scaling of a thermodynamic response can be done as
in the case of 4He near the superfluid transition. A review of earlier data for helium can be
found in reference [6].

2. Experimental details

The first experimental requirement for studying finite-size effects in 4He is the design and
construction of an enclosure which will provide a uniform confinement. We have used a
technique of direct wafer bonding to construct experimental cells which have exceptional
homogeneity in the near-µm and sub-µm range [7, 8]. The concept is indicated schematically
in figure 1. The design consists first of all of a silicon wafer which has a SiO2 pattern formed
lithographically. This pattern has an outer ring border (designed to seal the cell) and a series
of SiO2 posts (designed to space the wafers). A second wafer with a centre hole is bonded
to this bottom wafer. This forms an enclosure of uniform small height L determined by the
thickness of the oxide and effectively infinite (relative to ξ ) lateral extent. The bonding of
the two wafers involves a direct Si-to-SiO2 room temperature contact bonding and subsequent
annealing at higher temperatures. The structure of the cell can be monitored at various stages
of assembly by using infrared imaging. In particular the spacing, if greater than 0.5 µm, can

Figure 1. A cut-away view of a silicon cell to confine liquid helium. The smallest dimension is
determined by the thickness of the oxide layer.
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be measured interferometrically. It is typically uniform to better than 1% over the area of the
cell. Cells with different Ls can be made to study effects of confinement. At present, cells in
the range of 0.05 to 3.9 µm have been used in our work.

We have performed three types of measurement using these cells. One can stage them in
such a way that the superfluid density can be determined by measuring the changes in mass
loading of the cell as the helium becomes superfluid [9]. For this, the cell is made part of
the moment of inertia of a high-Q torsional pendulum. Changes in the period of oscillation
yield the superfluid fraction as the superfluid decouples from the motion of the confining
walls. In another arrangement, one can measure the specific heat by imposing time-dependent
temperature oscillations and examining the amplitude response [10]. The cell arrangement for
this type of measurement is shown in figure 2. The cell is connected to a filling line which also
provides a weak thermal link to an isothermal platform labelled S1. Another weak thermal
link is provided via copper wires to a second isothermal platform labelled S2. This second
link is used to ensure that the cell is colder than stage S1. The cell has an evaporated film
heater and two doped germanium resistors which are used as thermometers. When helium is
condensed in the cell, most of it collects in the filling line immediately above the cell. This
is bulk helium, and would give a much larger heat capacity signal than the helium confined in
the cell. Thus, an adiabatic measurement of heat capacity is not possible. It would also not be
possible without the helium in the filling line, since the requirement of good thermal isolation
for such small sample would be very difficult to achieve. In an AC measurement, however, a
frequency ω can be chosen such that only the confined helium responds while the bulk helium
does not. Under certain conditions, one can write the amplitude of the detected temperature

Figure 2. The experimental cell is staged at low temperature as indicated above. The connection
to the helium filling line is via a stress-relief arrangement to prevent shattering of the silicon. Two
thermometers provide temperature regulation and ac temperature read-out. Two isothermal stages
define the isothermal environment.
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oscillations Tac as [10]

Tac = Q0

2ωC
f (ω)g(ω) (1)

whereQ0 is the amplitude of the power applied to the heater, C is the desired heat capacity, and
the functions f and g describe the rest of the frequency response. The first function describes
principally a process whereby at low frequency Tac is reduced due to heat losses to stage S2;
and, at higher frequencies, Tac is reduced principally due to finite thermometer relaxation time
[11]. The second function describes possible lateral temperature inhomogeneities over the
surface of the cell [10]. This equation can be used to obtain both the heat capacity of the empty
cell (30–60 µJ K−1 near 2 K) and the cell full of helium.

The arrangement of the cell shown in figure 2 can also be used to obtain the superfluid
fraction. Below the transition, the superfluid will move readily in response to a chemical
potential difference. Thus, if the cell becomes momentarily hotter than the filling line, super-
fluid will move into the cell from the filling line. This will increase the pressure, thereby
providing a restoring force. We have called this adiabatic fountain resonance, AFR [12]. This
mechanism has a characteristic resonance frequency ωR given by

ω2
R =

(
ρs

ρ

)
g

ρK
(1 + γ ) (2)

where ρs/ρ is the superfluid fraction, g is a geometric factor for the cell, K is the isothermal
compressibility, and γ is a thermodynamic term which is typically about 0.02. This resonance,
while useful in obtaining ρs/ρ, can actually interfere with the determination of the specific
heat if ωR is sufficiently close to the frequency at which the heat capacity is measured. On
the other hand, if these frequencies are sufficiently separated, one can get two independent
thermodynamic properties at the same time.

In figure 2 two thermometers are shown on the cell. We use one thermometer to regulate
the average temperature of the cell. This can be done to within about 10−7 K. The other
thermometer is DC biased and is used to detect the AC temperature oscillations. This can be
done to better than 5 × 10−8 K by averaging the signal over several minutes.

The bulk helium which collects in the filling line performs two functions. It gives the
important benchmark of Tλ, relative to which the scaling will be done, and provides a thermal
ballast which is useful is stabilizing the average temperature of the cell.

3. Correlation-length scaling

A sketch of the specific heat of bulk helium and confined helium is shown in figure 3. One
can use this to introduce various features of finite-size scaling. The specific heat of the bulk
system, C∞ has a singularity at Tλ. The confined system, on the other hand, has a rounded
specific heat with maximum shifted to a lower temperature Tm. One expects that [2]

1 − Tm/Tλ = tm = a0L
1/ν (3)

where ν is the exponent of the correlation length, 0.6705 [13, 14] for helium. This shift
equation, as well as equivalent equations which focus on a particular points in C(t, L) and
how they vary with L, are all part of more general scaling equations which describe the overall
‘missing signal’ between C∞(t) and C(t, L). These can be written in such a way as to make
most direct contact with theoretical calculations of the scaling functions [15, 16]:

[C(t,∞) − C(t, L)]tα = �C tα = (x)αf2(x) = g2(x) (4)

[C(t, L) − C(t0,∞)]L−α/ν = f1(x) (5)
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Figure 3. A sketch of the specific heat near the superfluid transition for a bulk sample, C∞, and a
sample confined to a small dimension L,CL. Various features of the difference between the heat
capacities can be described by scaling relations. See the text.

where x = tL1/ν and α is the exponent of the specific heat, −0.0115 for helium [14, 17]. One
can see that equation (3) can be obtained from (5) by setting the derivative of C(t, L) = 0.
Similarly one can obtain an equation for Cmax = C(tm, L):

C(tm, L) = C(t0,∞) + f1(xm)L
α/ν (6)

or for the value of the confined specific heat at t = 0:

C(0, L) = C(0,∞) − f1(0)L
α/ν. (7)

In equations (5), (6), t0 is the reduced temperature at which ξ = L. The two scaling functions
f1(x) and f2(x) are related to each other [18]. Thus, if the data scale with one equation they
will scale with the other. However, these two equations bring out different features of the data
and are subject to different systematic errors in the analysis. For instance, for equation (4) one
needs the detailed temperature dependence of C(t,∞), while for equation (5) one needs only
the value at which the bulk correlation length is equal to L.

The qualitative behaviour of the superfluid density is shown in figure 4. Again, as in the
case of the specific heat, one can say that the confinement decreases the superfluid fraction,
and in particular causes it to vanish at a temperature below Tλ. Thus there is a missing signal
which should be described by a scaling function. This can be written as [2, 19]

1 − ρs/ρ

(ρs/ρ)bulk
= f (tL1/ν). (8)

Also indicated in figure 4 is a region labelled crossover. This is meant to indicate that,
for instance for a film geometry, one should crossover into 2D; hence one should expect a
discontinuity in the superfluid fraction very close to Tc [20]. This crossover should also take
place in the specific heat but it was not indicated in figure 3. For the specific heat there is no
particular structure expected (or observed) at Tc; in fact the specific heat maximum itself is not
the location of Tc. This is expected to be at somewhat lower temperature [21], as has indeed
been observed for thin films [22], and for the present data [23].
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Figure 4. Behaviour of the superfluid density for confined and bulk helium. As for the specific
heat, there is a missing signal which is described by a scaling function. The behaviour of the
superfluid fraction in the crossover region depends on the lower dimension.

There is another way of looking at the effect of confinement, that is via surface properties
(note that strictly surface properties independent ofL can also be defined for an infinite system).
This idea is applicable in the limit where ξ � L, but effects of confinements to a finite L are
still observed. In this limit, one can break up the total free energy F into a bulk free energy
per atom fB and surface free energy per atom fS [24]:

F ∼= NfB + NSfS. (9)

The ratio NS/N is the surface-to-volume ratio which for a film of thickness L is 2/L. If one
assumes that the bulk and surface specific heats are described by power laws with exponents
α and αS respectively, one can show that [25]

C(t,∞) − C(t, L) = −2AS

LαS

t−αS . (10)

Thus, by comparing this with the expected scaling, equation (4), one can see that the surface
exponent must be αS = α + ν. The amplitude of the surface specific heat AS must be negative,
and has recently been calculated [26]. In this limit, as can be seen from equation (10), the
scaling function g2 (see equation (4)) is pure power law with exponent ν.

4. Data and analysis

4.1. Specific heat

The data for helium confined in the planar geometry of the experimental cells described earlier
are shown in figure 5 for T > Tλ [18, 27]. Here data for six different confinements are plotted
on a semilog scale as a function of the distance from Tλ. The qualitative behaviours of these
data are as expected. For large values of t , or better, for values of t where ξ � L (which occurs
at different t for different L), the specific heats merge onto the behaviour of the specific heat in
the thermodynamic limit. This is the solid line, which represents the combined measurements
from many investigators [17]1. Then, as one follows the confined data to smaller values of t ,
one by one the data for various Ls ‘roll off’ to a constant. This is the value C(0, L) which

1 An analysis of data from several investigators to yield a function useful over a broad range of t is carried out in
reference [27].
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Figure 5. The specific heat for T > Tλ for six different confinements.

is the point at which C(t, L) crosses Tλ; see figure 3. These data should collapse when the
difference between C(t,∞) and C(t, L) is plotted according to equation (4). This scaling plot
is shown in figure 6. This is a log–log plot of all these data. The first observation is that all
these data collapse on a universal locus with no systematics associated with the different Ls.
One can also add to these results data at 57 µm confinement given by Lipa et al [28] which
also agree with these results.

The overall behaviour of the scaling locus is that for large values of the scaling variable
this is described by the surface specific heat; see figure 3 and equation (10). The dashed line
in this region of the data is the theoretical result of Mohr and Dohm for the amplitude AS [26].
This calculation involves no adjustable parameters and only bulk properties. The agreement
with the experimental results is excellent. See reference [18] for further discussion on this,
and the role of dimensionality crossover. The surface specific heat description must fail as
the scaling variable becomes smaller; one sees this as a deviation of the data from the straight
line in figure 6. For very small values of tL1/ν the curvature in the data is a reflection of the
behaviour of C(t,∞). That is, as the confined system’s specific heat rolls off to a constant,
the dominant temperature dependence is that of the bulk specific heat. The fact that the data
collapse in this region is still significant, since this depends of the measured value of C(0, L).
An empirical function which describes the full range of the scaling locus was obtained by
Mehta et al [27]. The theoretical scaling function [29] which should describe the full range of
scaling tends to fall below the data for small values of the scaling variable [18, 27]. This reflects
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Figure 6. A scaling plot for the specific heat in the region T > Tλ.

an underestimate of the effect of confinement. This is also consistent with calculations which
yield C(0, L): these also yield larger values than what is obtained experimentally; see below.

We also note that a careful look at the region where the concept of a surface-plus-bulk
properties applies shows that it extends to a value of about 9 in the scaling variable (note L is
in Å). This translates into a ratio of ξ(t,∞)/L ∼ 0.35, which is surprisingly large. However,
one should recall that the correlation length itself is renormalized due to confinement. We
calculate that this ratio is closer to 0.2 if one takes a reasonable estimate for ξ(t, L)/L.

The data for T < Tλ are shown in figure 7. Here a very similar behaviour for large values
of t is seen as for T > Tλ, i.e. the data merge onto the solid line representing the bulk system.
Not all of the data are continued to this limit because in some cases the onset of AFR distorts
the heat capacity signal [23]. One can see in figure 7 that the specific heat maximum moves
progressively further from Tλ asL is decreased and as equation (3) would indicate. The scaling
of these data according to equation (4) is shown in figure 8. For clarity, only three sets of data
are plotted here. See references [18, 27] for more comprehensive plots. One can see from
figure 8 that the scaling for T < Tλ is more complicated than for T > Tλ. First of all, there
are no reliable theoretical calculations of the function f2(x) in the region of the specific heat
maximum (the minimum in figure 8) with which the data can be compared. Even the surface
specific heat calculation, which works so well for T > Tλ, does not work at all for T < Tλ [26].
For small values of tL1/ν in figure 8, one can see that there is as good a scaling of these data as
there is for T > Tλ. This holds until the region of the minimum is reached. Significantly, the
region of good collapse corresponds to the region where the confined system is still normal.
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Figure 7. The specific heat for T < Tλ for six different confinements.

The superfluid transition does not take place in these data until tL1/ν ≈ 12, i.e. slightly to
the right (the cold side) of the minimum in this figure. In the region of the minimum the data
at smaller confinement lie higher than the data for larger confinement. This lack of scaling
continues for larger values of tL1/ν—all in the superfluid region of the confined film.

We have suggested that the above behaviour is related to the 2D crossover of the confined
films [18, 27]. In 2D, for an XY system, the maximum of the specific heat is not the location of
the transition, but rather this occurs below the maximum. This is as observed experimentally in
these data and for much thinner films as well [22]. The lack of scaling could be due to the fact
that in 2D the specific heat is not universal [21]. This is reinforced by the observation that older
data, taken with confinement in a cylindrical geometry (1D crossover) [15], do not show this
behaviour [27]. However, this conclusion is based on measurements in which the confinement
was certainly not as homogeneous as in the present experiments, and, just as important, it only
covered reliably confinements over a range of a factor 2.5. The data in figure 5, 6 range over
a factor of 20 in L. It is also interesting to note that data for the superfluid fraction in 2D
confinement also do not scale. See below. Clearly, new measurements for 1D and for 0D
crossover (for which none exist at present) would be necessary to clarify whether the lack of
scaling comes with the onset of a non-zero order parameter, or is a reflection of 2D crossover.

In figure 9 are shown the data for C(0, L) as function of confinement size. Unlike the
previous scaling plots this plot does not rely on values of the bulk specific heat. C(0, L) is
measured directly. One can see that data for helium confined between silicon wafers, including
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Figure 8. A scaling plot for the specific heat in the region T < Tλ.

the point at 57 µm from Lipa et al [28], as well as data for unsaturated films [15], all fall very
nicely on a curve described by equation (7). The theory curve [30] lies slightly above these
data. The calculation of reference [31, 32] lies much above the data. This indicates an
underestimate in the theories of the effects of confinement. It is somewhat surprising that
the data for unsaturated films (different boundary conditions, one solid surface, and a liquid–
vapour interface) would fall in with data which represent confinement by two solid surfaces.
This is surprising, as well, given the fact that the unsaturated films have thickness below 55 Å,
a value one might consider too small to verify scaling effects. All of these facts suggest that
this type of scaling (i.e. single-point scaling of C(0, L) or Cmax or Tλ − Tmax is not really
very sensitive to some of the subtleties of confinement. Note in this regard that the position,
i.e. shift of the specific heat maximum, also scales very well [27]; however, the value of the
maximum as discussed in relation to figure 8 does not. See reference [18] for further analysis
using the scaling function f1(x), and, in particular, for systematics associated with Cmax .

4.2. Superfluid fraction

The superfluid density of helium confined within the silicon cells was measured in two different
ways: with a torsional oscillator [9], and by making use of the adiabatic fountain resonance
and equation (2) [12, 33]. Each method has some advantages and some disadvantages. With
the torsional oscillator, a technique pioneered by Bishop and Reppy to study near monolayer
films of helium [34], one looks for changes in the period of oscillation due to changes in mass



4882 F M Gasparini et al

Figure 9. The scaling of the specific heat at t = 0, C(0, L).

loading as the superfluid density varies. The helium, however, represents a small fraction of
the total moment of inertia, a part in 104 to 105 depending on the design and sample. Thus, to
resolve small changes in ρs one has to resolve the period of oscillation to better than a part in
108. This can be done. Ideally one should achieve a part in 109 or better. A strong advantage
of this technique is that one can follow the changes in ρs through the transition without loss
of signal.

In the case of AFR, the resonance determines the superfluid fraction directly, apart from
a normalization of the magnitude to take care of certain geometric terms which are not well
known. Thus, there is no large ‘background’ to worry about. However, the resonance becomes
seriously damped as the transition is approached. An example of this is shown in figures 10, 11.
Here are plotted the amplitude of the temperature response and the phase shift of the detected
signal relative to the drive signal at the heater. Note in these figures that the temperature
excursions measured are quite small (see the vertical bars in figures 10, 11). From either
the temperature or phase signals one can get ωR and other parameters of the resonance. For
figure 10 the temperature is t = 0.01 while for figure 11, t = 0.0013. The difference between
these data is striking. The increase in dissipation as t becomes small is manifest in the increase
in the resonance linewidth. It was recently shown, in the case of 3He–4He mixtures, that the
dissipation can be scaled with ξ , but the actual scaling locus is reflective of the growth of the
2D correlation length [33].

Dissipation is a characteristic of the 2D transition in which vortices play a central role
[35]. However, it is also a problem in other geometries when a resonance involves confined
helium [36]. Because of these effects, the resonance vanishes before the superfluid fraction
does. This was first observed in third sound which is a resonance mode in very thin helium
films [37]. The net result is that one cannot establish the behaviour of ρs very close to the
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Figure 10. The resonance signal at t = 0.0109. Both amplitude and phase are well defined at this
temperature. The lines through the respective data are fitted to theoretical functions describing the
resonance.

Figure 11. The resonance signal at the limit of resolution t = 0.001 29. The solid line through the
phase data is a fit to a theoretical function which describes the resonance.

transition. In the AFR with the silicon cells there is also dissipation as the confined helium
communicates with the bulk helium in the filling line. In the design of some of our cells we
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actually modified the region immediately below the central filling hole (see figure 2) to damp
out the AFR completely. We did this because our primary interest was in the heat capacity, and
the resonance often distorted these data which were taken at a fixed ω which would eventually
overlap with the resonance on the superfluid side. The net result of this is that there are reliable
AFR data for only two of the cells in which heat capacity data were also measured. For the
torsional oscillator (TO) the data available are those of Rhee et al [9]. Altogether these data
span a range of confinement of a factor of about 80.

Data for the superfluid fraction are shown in figure 12. The value at which, ideally, the
data should have a discontinuous jump to 0 [20] is indicated by the short horizontal lines. One
can see that the AFR data (circles and plus signs) are close to this limit. On the other hand,
the TO data run continuously through this limit. The expected discontinuous jumps can only
be realized in the DC limit and are rounded off at a finite frequency. The dashed line through
the data is the behaviour of ρs/ρ in the thermodynamic limit [38]. The data at 0.0483 µm
are represented by a dot and an open circle. This indicates independent results from either the
phase data or the temperature amplitude data (see figures 10, 11). To scale all of these data
according to equation (8), one needs to ratio the measured ρs/ρ to the bulk value, and plot this
as a function of the scaling variable. This is shown in figure 13.

Figure 12. The superfluid fraction for six different planar confinements. Two different techniques
were used to obtain these data. See the text.

It seems clear from figure 13 that the superfluid density data do not collapse onto a
universal curve. They do not scale. There is a systematic trend in the data whereby the smaller
confinements lie progressively to the left of the larger confinements. This lack of data collapse
should be contrasted to figures 6 and 8 for the specific heat. The theoretical scaling function
calculated from field theory is shown as the solid line on this graph [29]. The dashed curve will
be discussed below. There are also results for the scaling function from numerical simulations
of the 2D XY model [39]. Interestingly, these numerical simulations do not yield a collapse of
the calculated data unless one adds a constant length scale to each L for which the simulation is
done. This yields a universal function, but is contrary to the expectations of correlation-length
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Figure 13. Data for the superfluid density plotted according to equation (8). The × and + symbols
are for AFR data; the remaining symbols refer to TO data. For the theory curves, see the text.

scaling. Whether the problem with the lack of scaling with the experimental data is the same as
with the numerical simulation is not clear. Adding a length scale to the experimental data has
been tried, but what is required according to reference [39] is 0.145 µm, for an approximate
collapse of the data. This seems quite a large length whose physical significance is unclear.
Further, it seems quite arbitrary, given that the specific heat requires no such length scale. It
is interesting to note, as remarked before, that the specific heat itself near the maximum and
on the superfluid side does not scale as well. It was suggested earlier that the lack of scaling
might be associated with the 2D crossover. It would be desirable to have ρs/ρ data for other
crossover dimensions, but none are available to test scaling in the same way as in figure 12.
See reference [36] for data on ρs/ρ for helium confined in a cylindrical geometry.

There is another way to examine the ρs/ρ data which is analogous with the surface-specific
model used earlier. In the same spirit, one can expand the scaling function in equation (8) to
obtain f (t/L1/ν) ∼ t−ν/L. This expression can be used even with data where the confinement
is not uniform and cannot be scaled with a particular L. That is, the initial deviation from bulk
behaviour in any confinement is due to the proximity of the superfluid to a surface and the fact
that the order parameter has to vanish. A number of data were analysed this way by Gasparini
and Rhee [6]. They found that the data did obey a power law in t , but the exponent was close
to 1 rather than the expected 0.67. See table 4 in reference [6].

5. Role of the confining surface

The surface which confines the helium plays two roles: it terminates the order parameter leading
to finite-size effects, and it also provides, via the van der Waals attraction, an inhomogeneity
which disrupts correlation-length scaling. In helium this attraction may be viewed as providing
a local pressure which affects the superfluid transition. The value of Tλ, and the amplitudes
of both the specific heat and the superfluid fraction are functions of pressure. In the case of
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the superfluid fraction, a phenomenological theory due to Ginzburg and Pitaevskii [40] and
modified by Mamaladze [41] can be used to describe inhomogeneities in the superfluid. Much
work with this theory has been done by Ginzburg and Sobyanin [42] who refer to it asψ-theory.
In this theory one has to solve a differential equation for ψ which can be written as [42]

∇2ψ = 3

3 + M
{−1 + (1 − M)ψ2 + Mψ4}ψ (11)

where the equation has been written in terms of dimensionless spatial variables r/ξψ , with
ξψ = 2.174(Tλ − T )−2/3 K2/3 Å, and ψ = ρs(r)/ρs bulk . M is a parameter in the theory
which typically takes values between 0 and 1. It does not play a strong role in the effects
to be investigated. Note that equation (11), written as indicated, guarantees that the value of
ρs(r)/ρs bulk , which has to be averaged over the volume of confinement, will be in scaling
form. Equation (11) allows one to introduce an external potential via its effect on Tλ:

Tλ = Tλ0 +
dTλ
dµ

V (r). (12)

Specifically, one can introduce the van der Waals potential energy in the form V (z) = −θ/z3

where θ is characteristic of the helium–silicon interaction, and z is the distance from the
surface. There are no attempts in such an approach to include density variations (due to the
local pressure) and variations in ξψ due to density.

The calculation of the scaling function for ρs (in the absence of V (z)), and for planar
confinement is shown as the dashed line in figure 13 [43]. There is not much one can say about
agreement or disagreement of the calculation with the data since the data do not collapse onto a
universal locus. Although the ψ-theory result clearly differs from the field-theory calculation,
and thus might not be considered as reliable, it gives us a way to calculate the effects of the
van der Waals field, by examining relative changes due to V (z). A calculation of the ratio
(ρs(r)/ρs bulk)ave for the confinement at 0.0483 µm and 0.9869 µm is shown in figure 14
[43]. Also on this plot is this ratio in the absence of V (z). As expected, the effect of the van
der Waals field is small for the larger confinement. This can also be seen from the inset in
this figure where the difference between the superfluid density ratio without and with V (z) is
shown. For the smaller confinement one can see that V (z) lowers the value of the superfluid
ratio substantially. From the inset, one can see that overall the effect is small at large values of
the scaling variable, and more visible as t decreases. This is reasonable, since for large t the
superfluid fraction is large and the surface influence amounts to a small perturbation of this
value. For small t the situation is reversed: the superfluid density is already small and the van
der Waals field has a more visible effect; ultimately it drives ρs to zero at a temperature below
where it would have vanished for V (z) = 0.

On the basis of this calculation one can conclude that if one were to correct the superfluid
density data for this effect (note that the experimental data include the effect of V (z) for all
confinements), one would have to increase the superfluid fraction of the smaller confinements
relative to the larger. This would make the disagreement with scaling as shown in figure 13
even worse. Thus, based on this, the disagreement with scaling does not have as a source the
inhomogeneity introduced by the walls.

We do not see a way to calculate from ψ-theory effects of V (z) on the specific heat.

6. Summary and remarks

The way a finite system reaches its thermodynamic limit is one of the fundamental problems
in statistical mechanics. Near a second-order phase transition, confinement to a finite size
has a more marked effect due to the growth of the correlation length. To study these effects
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Figure 14. Ratio of confined to bulk superfluid fraction as a function of the scaling variable. The
effects of the van der Waals potential are shown for two values of L. The inset emphasizes the
difference between the solid line and the dashed lines [43].

one must recognize that they are dependent on the geometry of the sample. Thus, control of
the homogeneity of confinement is just as important as the precision of the thermodynamic
measurement. Simple geometries can be used so that one or more of the spatial dimensions
are made small. In addition, one must recognize that for any given system the confining
boundaries themselves might affect the order parameter in a critical way. The superfluid trans-
ition in 4He is ideal for studying finite-size effects because of the nature of its order parameter,
the detail in which the behaviour in the thermodynamic limit is known, and some advantages in
thermometry and temperature control which can be realized at low temperatures. In addition,
since the superfluid transition extends in the pressure–3He-concentration plane, there exists
the possibility of exploring the expected universal character of correlation-length scaling.

Measurements of the specific heat and superfluid density in a planar confinement between
silicon wafers have yielded a number of results. The specific heat on the normal side
of the transition scales very well with the exponent of the bulk correlation length. In
addition the region which is describable by a surface specific heat agrees very well with
theoretical calculations. Closer to the transition, one finds that the theoretical scaling function
underestimates the effect of confinement. The region for T < Tλ shows that the data scale well
until one reaches the region of the specific heat maximum. Here the data separate systematically
with an unexpected lack of scaling. It seems likely that this is a manifestation of the 2D
crossover for these data. More measurements are needed for other confining geometries to
confirm this conclusion.

Data for the superfluid fraction obtained using two different techniques do not scale. From
examination of other data, which can be done using a limiting form of the scaling function, this
seems to be a more global problem than in the case of the specific heat (at least judged on the
basis of data available at present). It could turn out that the region where the order parameter
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is not zero is the region where scaling fails. More data obtained under the controlled geometry
of the planar silicon cell are necessary to reach a firmer conclusion. Certainly data for 1D
crossover and 0D crossover would be desirable.

On the theory side, one must view the agreement with the surface specific heat calculation
as very encouraging. More accurate calculations of the overall scaling function which would
extend through the region of the maximum would be desirable. At the same time the calculation
of the surface specific heat on the superfluid side remains a puzzle in its lack of agreement
with the data. Perhaps this should not be worrisome, given that the data do not scale in this
region. Numerical Monte Carlo calculations have been very helpful particularly in identifying
the differences in dimensionality crossover for the specific heat [44]. These calculations also
have revealed a lack of scaling for the superfluid fraction. It is not clear, however, whether
this lack of scaling stems from the same root as in the experiments. Field-theory calculations
of the superfluid density do not reveal any lack of scaling. However, recent results suggest
possible lack of scaling, but in a region far from the transition [45].

In summary, much progress has been made in understanding finite-size scaling at the
superfluid transition, but there are a number of unresolved puzzles and difficulties which await
further experiments and theory for their resolution.
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